

Graviton Analysis Update

Thiago Tomei

Samples Used

- Official Summer 2009 Production Pythia6 QCD Sample
 - /QCD_Pt15/Summer09-MC_31X_V3_7TeV-v1/GEN-SIM-RECO
 - 6.5M events, pthat > 15 GeV, event weight ~ 14000.
- Private-produced RS \rightarrow ZZ \rightarrow q qbar nu nubar \rightarrow jets + MET
 - 5145 events, σ = 0.119 pb (Z decay fully inclusive)
 - $\rm M_{_G}$ = 800 GeV, ($\rm k$ / $\rm M_{_P}$) = c = 0.05
 - 28% chance of $Z \rightarrow q \; q$ bar nu nubar
 - Cross-section for signal = 0.0397 pb
- What makes signal different from background?
 - Presence of real MET
 - Presence of a single, high-momentum, FAT jet.

Definition of Objects

- Jet: calorimeter-based jet (made from standard calorimetric towers)
 - SISCone algorithm, $\Delta R = 0.7$
 - Subject to standard CMS L2 and L3 corrections (according to eta and pT of the jet).
 - Subject to the minimal jet ID cut (|eta| > 2.6 OR EMF > 0.01)
- MET: absolute value of the vectorial sum (in the transverse plane) of all calorimeter cells.
 - Corrected for the presence of globalMuons in the event (corMetGlobalMuons)

Distributions of Interest

Cut-based Analysis

- First approximation: select events where the variables of interest are in the signal dominated region (namely, the crossing points in the distributions).
 - MET > 30 GeV
 - pT of the leading jet > 70 GeV
 - |eta| of the leading jet < 1.2
 - Mass of the leading jet > 20 GeV
- We also cut on the presence of anomalous HCAL noise in the event.

Cut-based Analysis

Cut	QCD	RS
No cuts	6256300	5145
Noise cut	6256300	5033
>= 1 jet (w/ ID)	6106643	5033
jet pT > 70 GeV	30064	4978
eta < 1.2	16620	3804
jet mass > 20 GeV	3588	3694
MET > 30 GeV	374	3687
Total efficiency	5.97E-05	0.717

- Efficiency is very good for the signal, and very bad (which is GOOD) for the background.
- But the sheer cross-section of QCD means that we still have to deal with ~ 5.3 M events that pass those cuts.

Distributions of Interest

Some Remarks

- It seems to me that I can cut harder on some variables (jet pT, jet mass and MET).
- On the other hand, the eta cut doesn't seem to be useful.
- Check the existence of correlations in between the variables.
- Notice that I get the mass of the Z boson more correct now! That is because I am using corrected jets.
 - I have done some back of the envelope calculations that show that the shift in the mass of a jet due to the mismeasurements of the constituents' energy is ~ proportional to the energy of the constituents → proportionality to the energy of the jet.
- Perhaps I should cut on a ratio mass / energy of the jet, instead of pure mass?

Some Remarks

- Perhaps I should veto on the presence of extra jets?
 - Perhaps veto jets back to back with my fat jet? That would probably kill the rest of QCD.
 - In this sense, the analysis becomes much like the monojet analysis pushed by Albert de Roeck.
- Other variables?
- No possible full kinematic construction. Ideas?
- Other tools? Compound Jets?

Some Remarks

- It seems to me that I can cut harder on some variables (jet pT, jet mass and MET).
- On the other hand, the eta cut doesn't seem to be useful.
- Clearly there are some correlations in between the variables.
 - Notice that I cut at 30 GeV jet pt, but I get almost a 60 GeV threshold in the distribution!
- Notice that I get the mass of the Z boson correct now(