





# Serach for High Mass Resonances in the Jets Missing $E_{\tau}$ channel.

Thiago Tomei et al.











# Experimental Signature



- Scenario: a high mass resonance leads to highly boosted massive decay products.
- Benchmark: pp  $\rightarrow$  G<sup>\*</sup> (RS Graviton)  $\rightarrow$  ZZ  $\rightarrow$  q qbar + nu nubar
  - Hadronic channel  $\rightarrow$  higher branching ratio.
  - Visible Z boson: decays to quarks and gives rise to two hadronic jets, which MERGE and appear in the detector as a SINGLE JET. Main characteristics of this jet: massive (~ Z mass), high p<sub>T</sub>.
  - Invisible Z boson: decays to neutrinos and gives rise to high missing  $E_{T}$ .





# The Jet Merging Phenomenon



4





# The Randall-Sundrum I Model



- Possible solution for the SM Hierarchy Problem
- "Braneworld model"
  - 5-dimensional warped bulk + two branes at fixed points.
  - Graviton probability function:
    - Large at the "Gravitybrane"
    - Exponentially small at the "Weakbrane".
- KK decomposition → effective Lagrangean in 4D
  - Series of Kaluza-Klein graviton resonances
  - Model parameters: k/M<sub>PL</sub> and m<sub>d</sub>
    - Coupling  $\Lambda_{\pi}$  related to those.



$$ds^{2} = e^{-2kr_{c}|\phi|}\eta_{\mu\nu}dx^{\mu}dx^{\nu} + r_{c}^{2}d\phi^{2}$$

$$\begin{split} \mathcal{L} &= -\frac{1}{\overline{M_P}} T^{\alpha\beta}(x) h^{(0)}_{\alpha\beta}(x) - \frac{1}{\Lambda_{\pi}} T^{\alpha\beta}(x) \sum_{n=1}^{\infty} h^{(n)}_{\alpha\beta}(x) \\ \mathbf{m}_{\mathrm{G}} \end{split}$$

 $\Lambda_{\pi} = e^{-kr_c\pi}\overline{M_P} = m_1\overline{M_P}/kx_1$ 



# The Randall-Sundrum I Model





0.04

0.06

0.08

0.1 k / M<sub>PI</sub>

0.02

Expected dependence with k/M<sub>PL</sub>



# **Kinematics Before Hadronization**





• Example distributions for  $M_G = 800 \text{ GeV}$ 

• At high transverse momentum, the Z boson and its daughters (as well as the daughters themselves) are very close in  $\eta$ - $\Phi$  space.

# **Kinematics After Hadronization**

dpT between jet and Z X Z pT

dR between jet and Z X Z pT





- The leading generator level jet matches kinematically the hadronically-decaying Z.
- Similar results for different mass points.



# **Generator Cross-Validation**



#### • Leading jet kinematics at generator level.





### **Generator Cross-Validation**



#### • Leading jet mass and event missing $E_{T}$ at generator level.









- Ideal event signature
  - $\quad \text{High } p_{_{T}} \text{ jet }$
  - High missing  $E_{T}$
- Deviations from ideal:
  - Underlying event
  - Strong final state radiation
  - Non-merging of jets







#### • Jet substructure







- Possibility to use jet pruning algorithms.
  - Ellis, Vermilion and Walsh (2009)
    - $k_{T}$  algorithm
  - Kaplan, Rehermann,
    Schwartz, Tweedie
    (2008)
    - C-A algorithm





