Simulação de Bósons Vetoriais e Jatos: Comparação de Cálculos em LO e NLO

Flavia Dias MCnet Short Term Studentship - Feb-Jun/2010

Introdução

- Importância de VB + jatos para determinação de background em busca para física nova.
- Além disso, permite testes importantes do MP.
- Usado como calibração de detectores.

Simulações de MC

- Importância para ajustes de teoria e para a comparação de dados experimentais.
- MC de própositos gerais em geral usam termos em até LO.
- Adiciona-se o formalismo de PS e de correções de ME.

Parton Shower

- Aproximação colinear da descrição da separação dos partons na radiação de QCD que acompanha o processo de espalhamento duro.
- Boa descrição de observáveis a baixo pT, mas falha no preenchimento do espaço de fase de radiação dura.

Correções de ME

 Melhora na descrição de PS através da adição de cálculos do elemento de matriz da radiação extra.

 Pode ser implementado de maneiras diferentes. Estudos comparativos entre Sherpa e Herwig++.

Sherpa - Improved CKKW merging

- Separa o espaço de fase nos domínios de ME e PS.
- Usa os pesos de Sudakov para garantir que se houve uma emissão pelo ME, o PS não vai novamente realizar essa emissão.
- O gerador toma conta de gerar automaticamente amostras inclusivas, para diferentes multiplicidades partônicas, com PS e hadronização.

Herwig++

- Divide as correções de ME como soft and hard.
- As correções soft adicionam as contribuições dos ME para baixo pT, e são implementadas separadamente das hard, de alto pT, que descrevem o ME exatamente.

Métodos em NLO

- Ir além de LO é uma tarefa complicada, no entanto cálculos com precisão de ordem mais alta são necessários em medidas experimentais precisas.
- Se ater em LO para o showering, e fazer cálculos dos processos duros em NLO geram melhoras nos geradores de multiplo propósito.

POWHEG - Positive Weight Hardest Emission Generator

- Gera primeiramente a emissão dura em NLO, e usa o programa de monte carlo de multi propósito para gerar as radiações subseqüentes.
- Sua fórmula pode ser parâmetro de entrada em qualquer gerador multi propósitos que permita fazer o showering ordenado por pT.

Compações aos dados do Tevatron

- Uso do programa Rivet para a comparação do MC com dados do D0 e CDF.
- Comparações são úteis para checar quais parâmetros e funcionalidades de cada gerador melhor descrevem a física da vida real.

Modelos de UE/MPI

Figure 1. Underlying Event analysis for Herwig + Z NLO with MPI on and off.

Figure 2. Underlying Event analysis for SHERPA Z + 3 jets with MPI on, and different PDFs: cteq6.6 with standard MPI or cteq611 with scale parameter equals to 2.1, 2.3 and 2.5.

PDF e pT intrinsico do feixe

Figure 3. The Z p_{\perp} in SHERPA for several different parameters of K_PERP and its uncertainty (left), and for different PDFs (right).

Total Recoil - Run I

Figure 4. Z p_{\perp} analysis for Tevatron Run I.

Total Recoil - Run II

Figure 5. Comparison plots for Z production at: NLO Herwig ++ and LO SHERPA Z+1, 3 jets.

Jet Recoil

Figure 6. Difference between Z p_{\perp} and: sum of jets p_{\perp} (left) and leading jet p_{\perp} (right) for Herwig + + (up) and SHERPA (down), MPI turned on.

Jet Recoil

Figure 7. Difference between Z p_{\perp} and: sum of jets p_{\perp} (left) and leading jet p_{\perp} (right) for Herwig + + (up) and SHERPA (down), MPI turned off.

Slices

Figure 8. The difference between Z p_{\perp} and the sum of all jets p_{\perp} for three regions of boson p_{\perp} : Z $p_{\perp} < 30 \text{ GeV}$, 30 GeV < Z $p_{\perp} < 100 \text{ GeV}$, Z $p_{\perp} > 100 \text{ GeV}$.

Slices

Figure 9. The difference between Z p_{\perp} and the leading jet p_{\perp} for three regions of boson p_{\perp} : Z $p_{\perp} < 30 \text{ GeV}$, 30 GeV < Z $p_{\perp} < 100 \text{ GeV}$, Z $p_{\perp} > 100 \text{ GeV}$.

D0 Z -> muons

Figure 10. Comparisons plots for Z production at NLO on HERWIG + +, in the muon Z decay channel.

D0 Z -> muons

Figure 11. Comparisons plots for Z + 3 jets production on SHERPA, in the muon Z decay channel.

Figure 12. Leading jet rapidity for jet cuts on tranverse momentum of 5 GeV (left), and analysis cut of 20 GeV (right).

Seção de Choque Total

	Total σ_Z [pb]	Uncertainty [pb]
CDF data	256.0	2.1
HERWIG + + LO ME on	185.1	0.7
HERWIG + + LO ME off	185.2	0.7
HERWIG + + NLO	230.4	0.9
Sherpa $Z + 1$ jet	171.5	0.3
Sherpa Z $+ 2$ jets	172.6	0.4

Table 1. The total cross sections for the Z production in data, SHERPA and HERWIG + + Monte Carlo generators.

Cinemática em LO e NLO

Figure 13. Comparison plots for Z production at: LO (ME correction off), LO (ME correction on and NLO.

Cinemática em LO e NLO

Figure 14. Comparison plots for Z production at: LO (ME correction off), LO (ME correction on) and NLO.

Conclusões

- LO PS + ME melhora a descrição em alto pT.
- NLO melhora na previsão de seções de choque e regiões de maior pT.
- Influência de parâmetros da simulação.
- Comportamento sistemático no pT do Z.
- UE Amisic 2.5 no Sherpa nenhuma boa escolha pra Herwig++.
- Z pT vs jet pT importância do modelo MPI escolhido.

Agradecimentos

- Marie Curie Actions Funding
- Emily Nurse
- Gavin Hesketh
- Frank Siegert
- Frank Krauss
- Peter Richardson

Referências

- Event generation with SHERPA 1.1, T. Gleisberg, S. Hoeche, F. Krauss, M. Schoenherr, S. Schumann, F. Siegert - J. Winter, JHEP 0902:007, 2009.
 - [2] Herwig++ Physics and Manual, M. Bahr, S. Gieseke, M. A. Gigg, D. Grellscheid, K. Hamilton, O. Latunde-Dada, S. Platzer, P. Richardson, M. H. Seymour, A. Sherstnev, J. Tully, B. R. Webber Eur.Phys.J.C58:639-707, 2008.
 - [3] Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, Stefano Frixione, Paolo Nason, Carlo Oleari - JHEP11 (2007) 070.
 - [4] Rivet user manual, Andy Buckley, Jonathan Butterworth, Leif Lonnblad, Hendrik Hoeth, James Monk, Holger Schulz, Jan Eike von Seggern, Frank Siegert, Lars Sonnenschein - MCnet/10/03.
 - [5] CDF public note 9351, Rivet user manual, as [4].
 - [6] Measurement of the shape of the boson transverse momentum distribution in ppbar -> Z/gamma* -> ee+X events produced at sqrt{s}=1.96 TeV, D0 Collaboration: V. Abazov, et al, Phys.Rev.Lett.100:102002, 2008.
 - [7] The Transverse Momentum and Total Cross Section of E+ E- Pairs in the Z-Boson Region from P Anti-P Collisions at sqrt(s) = 1.8-TeV, CDF Collaboration: T. Affolder, et al, Phys.Rev.Lett.84:845-850, 2000.

- [8] Measurement of the normalized Z/gamma*->mu+mu- transverse momentum distribution in p\bar{p} collisions at sqrt{s}=1.96 TeV, D0 Collaboration, FERMILAB-PUB-10-183-E.
- [9] Measurement of differential Z/gamma*+jet+X cross sections in proton anti-proton collisions at sqrt{s}=1.96 TeV, D0 Collaboration: V. Abazov, et al, Phys.Lett.B669:278-286, 2008.
- [10] Measurements of differential cross sections of Z/gamma*+jets+X events in proton anti-proton collisions at sqrt{s}=1.96 TeV, D0 Collaboration: V. Abazov, et al, Phys.Lett.B678:45-54, 2009.
- [11] Measurement of the shape of the boson rapidity distribution for p \bar{p}-> Z/gamma*-> e+e- +X events produced at sqrt(s) of 1.96 TeV, D0 Collaboration, V. Abazov, et al, Phys.Rev.D76:012003, 2007.
- [12] Measurement of Inclusive Jet Cross Sections in Z/g* (-> ee)+jets Production in ppbar Collisions at sqrt(s)=1.96 TeV, T. Aaltonen, et al, for the CDF Collaboration, Phys.Rev.Lett.100:102001, 2008.
- [13] Measurement of $d\sigma/dy$ of Drell-Yan e^+e^- pairs in the Z Mass Region from $p\bar{p}$ Collisions at $\sqrt{s} = 1.96$ TeV, The CDF Collaboration: T. Aaltonen, et al, FERMILAB-PUB-09/402-E.