Aspects of HEP -
 Data Reconstruction (2) and Analysis

Thiago R. F. P. Tomei
SPRACE-Unesp

Introduction to Reconstruction

After our particles have interacted with our detector, we have to "read out" that information, and format it in such a way that we can understand it. Generally, that entails some sort of transducer that converts the energy deposited in our detector elements and transforms it into electrical signals. It is also customary to digitise the signals for further data processing.
\square Local reconstruction starts with the detector readout (e.g., channel \#28 has 7 ADC counts), and transforms it into intelligible data - a "hit". This is usually low-level information localised to one subsystem, e.g., for a tracker detector it represents not much more than "a charged particle passed through this sensor"
\square Global reconstruction starts with the hits and tries to group them at a higher-level. Connecting the hits in a silicon detector to reconstruct the trajectory of a charged particle, or clustering the hits in a scintillator to reconstruct the deposit of a photon, fall in this category.
\square Global event description uses the high-level objects to describe the event as a whole, ready to be connected to a physics process interpretation. Connecting energy clusters to a track to try to reconstruct an electron or a charged hadron, or connecting tracks in two different tracker systems to reconstruct a muon, fall in this category.

Coordinate System

y (vertically upward)

$$
\eta=-\ln \left(\tan \left(\frac{\theta}{2}\right)\right) \times(\text { radially towards center of LHC) }
$$

Global Reconstruction: Tracking as Example

Track reconstruction refers to the process of using the hits, obtained from the local reconstruction, to obtain estimates for the momentum and position parameters of the charged particles responsible for the hits (tracks).
\square Translate the hits' local coordinate system to the tracks' global coordinate system.

- Misalignment of detector elements: additional uncertainty.

Traditionally divided in two steps:
\square Track finding: decide, within the set of reconstructed hits $\left\{X_{i}\right\}$, which subset $\left\{X_{i}\right\}^{k}$ makes up a given track candidate k.
\square Track fitting: from the subset of hits that make up a given track candidate, estimate the parameters - production vertex position \mathbf{x}_{v} and momentum at vertex \mathbf{p}_{v} - of the originating particle.

Tracking: A Hard Problem

Tracking: A Very Hard Problem

Motion in Magnetic Field

In a magnetic field the motion of a charged particle is determined by the Lorentz Force

$$
\frac{d \mathbf{p}}{d t}=e \mathbf{v} \times \mathbf{B}
$$

Since magnetic forces do not change the energy of the particle

$$
\begin{aligned}
m_{o} \gamma \frac{d \mathbf{v}}{d t} & =e \mathbf{v} \times \mathbf{B} \\
m_{o} \gamma \frac{d^{2} \mathbf{r}}{d t^{2}} & =e \frac{d \mathbf{r}}{d t} \times \mathbf{B}
\end{aligned}
$$

using the path length s along the track instead of the time $t, d s=v d t$ we have

$$
m_{o} \gamma v \frac{d^{2} \mathbf{r}}{d s^{2}}=e \frac{d \mathbf{r}}{d s} \times \mathbf{B}
$$

and finally

$$
\frac{d^{2} \mathbf{r}}{d s^{2}}=\frac{e}{p} \frac{d \mathbf{r}}{d s} \times \mathbf{B}
$$

\square Inhomogeneous $\mathbf{B}(s)$: solve differential equation to find the trajectory $r(s)$.
\square Homogeneous B: helix trajectory - circle in plane transverse to \mathbf{B}.

Magnetic Spectrometer

Solenoidal field

\square cylindrical symmetry
\square deflection in $x-y(\rho-\phi)$ plane
\square tracking detectors arranged in cylindrical shells
\square measurement of curved trajectories in $\rho-\phi$ planes at fixed ρ

Dipole field

\square rectangular symmetry
\square deflection in $y-z$ plane
\square tracking detectors arranged in parallel planes
\square measurement of curved trajectories in $y-z$ planes at fixed z

The Helix Equation

x_{o} and y_{o} are the coordinates at $s=0$, while

Parametric form:
$x(s)=x_{o}+R\left[\cos \left(\Phi_{o}+\frac{h s \cos \lambda}{R}\right)-\cos \Phi_{o}\right]$
$y(s)=y_{o}+R\left[\sin \left(\Phi_{o}+\frac{h s \cos \lambda}{R}\right)-\sin \Phi_{o}\right]$
$z(s)=z_{o}+s \sin \lambda$
λ is the dip angle. $h= \pm 1$ is the sense of rotation on the helix. The projection on the $x-y$ plane is a circle:
$\left(x-x_{o}+R \cos \Phi_{o}\right)^{2}+\left(y-y_{o}+R \sin \Phi_{o}\right)^{2}=R^{2}$
Φ_{o} is related to the slope of the tangent to the circle at $s=0$.
In the transverse plane $x-y$, we can relate the curvature radius R to the transverse momentum p_{T} as:

$$
R=\frac{p_{\mathrm{T}}}{0.003 q B}
$$

R in $\mathrm{cm}, p_{\mathrm{T}}$ in GeV, q in elementary charge, B in T .

Methods of Track Finding

Conformal Mapping

Circle going through the origin: $(x-a)^{2}+(y-b)^{2}=R^{2}=a^{2}+b^{2}$. Define:

$$
u=\frac{x}{x^{2}+y^{2}}, v=\frac{y}{x^{2}+y^{2}}, \text { leading to } v=\frac{1}{2 b}-u \frac{a}{b}
$$

How to obtain track candidates:
\square Convert hits from (x, y) to (u, v).
\square In the (u, v) coordinate system, the larger the momentum, the closer line is to origin.
\square Aproximate line as going through origin - hits of a track have constant ϕ_{v}.
In practice, we search for peaks in the histogram of ϕ_{v} variable of all hits.

Conformal Mapping Illustrated

All the blue points have, approximately, the same ϕ_{v}.

Methods of Track Finding

Hough Transform

Remember: the radius of curvature is $R=\frac{p_{\mathrm{T}}}{0.003 q B}$. We are interested in particles originating at or close to the interaction point. The trajectory of such particles in the transverse plane is described by the following equation:

$$
\frac{r}{2 R}=\sin (\varphi-\phi) \approx \varphi-\phi
$$

Here ϕ is the angle of the track in the transverse plane at the origin ($\phi=\Phi_{o}^{\text {helix }}-\pi / 2$). The small angle approximation is valid for tracks with $p_{\mathrm{T}} \gtrsim 2 \mathrm{GeV}$. Combine the two equations:

$$
\phi=\varphi-\frac{0.0015 q B}{p_{\mathrm{T}}} \cdot r
$$

So, one hit in (r, φ) maps to a straight line in the track parameter space $\left(q / p_{\mathrm{T}}, \phi\right)$.

If several hits are produced by the same particle, all the lines intersect at the same point.
\square Locate the intersection to identify a track.
\square Intersection coordinates locate provide track parameters $\left(q / p_{\mathrm{T}}, \phi\right)$.
\square Caveat: the gradient of each line is proportional to the hit radius r - always positive. Better use variables r_{T}, ϕ_{T} instead:

$$
r_{T}=r-T, \quad \phi_{T}=\phi_{\text {track }}\left(r_{T}\right)
$$

Now r_{T} can have both signs; this leads to a larger range of line gradients and more precision in the measurement of the intersection point.

Methods of Track Finding

Track Road and Track Following

These are local approaches, i.e., start already from a subset of the hits.
\square Track Road: start from hits that could have been created by the same particle. Use the expected trajectory shape to interpolate amongst the hits, creating a "road" around the trajectory. All hits that fall in the road constitute the track candidate.
\square Track Following: start from a "track seed" - a subset of hits that for some reason are deigned to be more accurate. From the seed, extrapolate until the next detector element containing a hit. The closest hit becomes part of the track candidate. Iterate until either 1) too many layers have missing hits or 2) the end of the detector system is reached.

Elements of Track Fitting

\square Track parameterization: depends on detector geometry. For helix trajectory in solenoid, we could use the parameter set $\left\{x_{o}, y_{o}, \Phi_{o}, \lambda, R\right\}$ we discussed.
\square Track model: how the track parameter or state vector \boldsymbol{q} at a given surface k depends on the state vector on a different surface $i: \boldsymbol{q}_{k}=\boldsymbol{G}_{k \mid i}\left(\boldsymbol{q}_{i}\right)$, where $\boldsymbol{G}_{k \mid i}$ is the track propagator from surface i to j.
\square Error propagation: during the track parameter estimation procedure, propagation of the track parameter covariance matrix along with the track parameters themselves is often requested.
\square Material effects: ionization energy loss, multiple Coulomb scattering, bremsstrahlung, all affect the particle propagation.
\square Measurement model: \boldsymbol{h}_{k} describes the functional dependence of the measured quantities in layer k, \boldsymbol{m}_{k}, on the state vector at the same layer: $\boldsymbol{m}_{k}=\boldsymbol{h}_{k}\left(\boldsymbol{q}_{k}\right)$.

Track Fitting - Momentum Measurement (1)

Particle momentum projected along two directions:

In the $\rho-\phi$ plane we measure the transverse momentum p_{T} through the curvature radius R :

$$
\int_{\phi}^{\infty} p_{\mathrm{T}}=p \cos \lambda=0.003 B R
$$

In the $\rho-z$ plane we measure the dip angle λ :

Orders of magnitude:

$$
\begin{array}{lll}
p_{\mathrm{T}}=1 \mathrm{GeV} & B=2 T & R=1.67 \mathrm{~m} \\
p_{\mathrm{T}}=10 \mathrm{GeV} & B=2 T & R=16.7 \mathrm{~m}
\end{array}
$$

The sagitta s :

Assuming a track length of 1 m :

$$
\begin{array}{ll}
p_{\mathrm{T}}=1 \mathrm{GeV} & s=7.4 \mathrm{~cm} \\
p_{\mathrm{T}}=10 \mathrm{GeV} & s=0.74 \mathrm{~cm}
\end{array}
$$

Track Fitting - Momentum Measurement (2)

Once we have measured the transverse momentum and the dip angle the total momentum is

$$
p=\frac{p_{\mathrm{T}}}{\cos \lambda}=\frac{0.003 B R}{\cos \lambda}
$$

The error in the momentum is easily calculated

$$
\begin{gathered}
\frac{\partial p}{\partial R}=\frac{p_{\mathrm{T}}}{R} \\
\frac{\partial p}{\partial \lambda}=-p_{\mathrm{T}} \tan \lambda \\
\left(\frac{\Delta p}{p}\right)^{2}=\left(\frac{\Delta R}{R}\right)^{2}+(\tan \lambda \Delta \lambda)^{2}
\end{gathered}
$$

We need to study:
\square the error on the radius measured in the bending plane $\rho-\phi$;
\square the error on the dip angle in the $\rho-z$ plane;
\square contribution of multiple scattering to momentum resolution.

In an hadronic collider the main emphasis is on the transverse momentum p_{T}. Since the elementary processes happen amongst partons that are not at rest in the lab frame, we employ momentum conservation only in the transverse plane.

Kalman Filter - The Ideas

\square To start the Kalman Filter we need a "seed";
\square the position on the next plane is predicted;
\square the measurement is considered;
\square prediction and measurement are merged (filtered);
\square iterate: prediction - measurement - filtering - . . .

- filtered trajectory predicted trajectory
smoothed trajectory

Filtering: weighted average of the new measurement y_{n} and the new prediction y_{p}. Smoothing: refine each position estimate with information from all measurements.

Kalman Filter - The Equations

Dimensions

$\square P$ parameters for track model.
$\square D$ measurements \boldsymbol{m}_{k} at each point (usually $D<P$).
$\square K$ measurement points $(N=K \times D)$.
\square State of the system at index k is \boldsymbol{q}_{k}.

Iterative method

Starting point

\square Initial set of parameters (seeds): first measurements.

\square Using system equation $\boldsymbol{q}_{k}=\boldsymbol{G} \cdot \boldsymbol{q}_{k-1}+\boldsymbol{\omega}_{k}$.

- $\boldsymbol{G}=P \times P$ matrix, $\boldsymbol{\omega}=$ perturbation associated with covariance $P \times P$ matrix V_{ω}.
\square Add new point, update parameters and cov., using meas. equation $\boldsymbol{m}_{k}=\boldsymbol{H} \cdot \boldsymbol{q}_{k}+\boldsymbol{\epsilon}_{k}$.
- $\boldsymbol{H}=D \times P$ matrix, $\boldsymbol{\epsilon}=$ measurement error associated with diagonal cov. $D \times D$ matrix V_{m}.
- Weighted means of prediction and measurement using variance $\Leftrightarrow \chi^{2}$ fit.

$$
\boldsymbol{q}_{k}=\left(V_{k \mid k-1}^{-1} \boldsymbol{q}_{k \mid k-1}+H^{T} V_{m_{k}}^{-1} \boldsymbol{m}_{k}\right) \cdot\left(V_{k \mid k-1}^{-1}+H^{T} V_{m_{k}}^{-1} H\right)^{-1}
$$

Global Event Description, a.k.a. "Particle Flow (PF)"

\square All of the subsystems provide basic elements: silicon tracks, calorimeter hits (EM and hadronic), muon spectrometer tracks, ...
\square Basic idea: correlate basic elements to identify all final-state particles. Combine corresponding measurements for ultimate accuracy in particle properties.

- Initially developed and used by ALEPH (LEP).
- Had not been used with much success in hadron colliders - detector granularity was not fine enough!
\square Complicated algorithm that implements a set of links:
- Electrons leave both tracks and EM calorimeter deposits; photons leave only the latter.
- Muons leave tracks both in silicon trackers and in muon spectrometers.
- Charged hadrons leave both tracks and hadronic calorimeter deposits; neutral hadrons leave only the latter.
- Electrons emit photons during bremsstrahlung, all that energy must be reclustered.
- A hadronic τ decay produces just a few hadrons and one neutrino.
\square The output of the PF algorithm is a list of final-state reconstructed particles.

Example: Electron Reconstruction with ECAL + Tracker

Hadronic Jets and Missing P_{T}

We saw in the the first lecture that quarks and gluons fragment and hadronize, producing a collimated, high-momentum spray of hadrons flying roughly in the same direction - a hadronic jet. A jet algorithm is an iterative, tuneable procedure that clusters close particles and creates the jet objects.

In the same vein, we can cluster all observed particles. This allows for an important cross-check: the total transverse momentum in a hadron collision should be zero. If, after the overall clustering, a sizeable transverse momentum remains, that would be evidence for an undetected particle being produced!
We define the missing transverse momentum $\vec{p}_{\mathrm{T}}^{\text {miss }}$:

$$
\vec{p}_{\mathrm{T}}^{\mathrm{miss}}=-\sum_{i} \vec{p}_{\mathrm{T}}^{\mathrm{i}}
$$

Event Displays of Calorimeter Jets

Event Display of a PF Hadronic Jet

Online Reconstruction

\square With a collision rate close to 40 MHz , impossible to record and store all collisions happening at the LHC experiments.
\square Trigger system implemented to keep only the more interesting collisions - quasi-real time reconstruction.
\square Level 1 (L1) trigger in CMS:

- Customizable hardware (ASICs and FPGAs).
- Output rate: 100 kHz (detector readout constraint).
- Timing: $4 \mu \mathrm{~s}$ (available buffer).
- Coarse granularity.
\square High Level Trigger (HLT) in CMS:
- PC farm with light version of the offline software.
- Output rate: 1 kHz average over LHC fill.
- Timing: $\lesssim 380 \mathrm{~ms}$.
- Full detector granularity.

A Fully Reconstructed Event

SPRACE

Reconstruction is ready...
... onwards to Data Analysis!

Introduction to Data Analysis

In broad terms, we can divide the LHC data analyses in two camps:
\square Measurements, in which one is trying to measure some known standard model quantity. Examples go from very simple quantities, like the Higgs boson mass M_{H}, to convoluted quantities like the fully inclusive top quark pair production at the LHC at $14 \mathrm{TeV}, \sigma(\mathrm{pp} \rightarrow \mathrm{t} \overline{\mathrm{t}}+$ anything $)$.
\square Searches, in which one tries to uncover evidence of discrepancies between the standard model predictions and the observed data. Examples include new searches for resonances, supersymmetry, dark matter. . .

But this distinction is a bit artificial! Consider:
$\square \mathrm{H} \rightarrow \mu \mu$ at the 13 TeV LHC has a well-defined SM prediction: $\sigma(\mathrm{pp} \rightarrow \mathrm{H} \rightarrow \mu \mu) \simeq 12.08 \mathrm{fb}$. This has not been observed yet, so we call it a search.
\square When searching for a new resonance, $\mathrm{pp} \rightarrow \mathrm{Z}^{\prime} \rightarrow$ ee, we usually make (multiple) assumptions on the value of its mass, spin, etc. We then try to measure its production cross-section - usually coming up with a value statistically compatible with zero.

What do we Actually Measure?

Easy answer - we count the number of events in a given configuration. The observed number of events for a given physics process $N_{\text {obs }}$ is:

$$
N_{\text {obs }}=\sigma \times \mathcal{L} \times A \times \epsilon
$$

where:
$\square \sigma$ is the production cross-section. This is a purely theoretical-driven quantity - it is the very σ we learned how to calculate on the first lecture.
$\square \mathcal{L}$ is the accelerator luminosity. This is a measure of how many particles we are able to fit through a given space in a given time. We discussed it on the second lecture.
$\square A$ is the acceptance. It measures, for that given process, the ratio of detectable particles that actually go into the detector volume.

- Technically, this is also theoretically-driven, but it is customary to factor it out like this.
$\square \epsilon$ is the selection efficiency. It can be subdivided into two parts, $\epsilon=\epsilon_{o} \times \epsilon_{a}$:
- ϵ_{o} is the efficiency of reconstructing a given set of objects in the detector. We discussed it on the third lecture.
- ϵ_{a} is the efficiency of any further requirements done in the analysis (a.k.a. fun ©).

The "given configuration" we discussed above is determined by the acceptance \times efficiency product. The total number of events we observe in that configuration is:

$$
N_{\mathrm{obs}}=\sum_{i} N_{\mathrm{obs}}^{i}+N_{\mathrm{fakes}}
$$

where the sum runs over all of the physics process that produce events in that configuration. There may be spurious contributions $N_{\text {fakes }}$ from any kinds of non-collision effects. Those include:
\square Cosmic rays going through the detector (fake muons).
\square Longitudinal particles from beam interactions with accelerator elements (beam halo).
\square Hardware failures: "hot cells", dead channels, high voltage spikes.
\square Software failures: e.g., unusual configurations of hits leading to high numbers of fake tracks.
\square The phase of the moon (?)

- Nucl. Instrum. Methods Phys. Res., A 357 (1995) 249-252
\square The seasonal variation of rainfall (???)
- Proceedings of the 1999 Particle Accelerator Conference, New York, 1999
\square The schedule of the French high-speed rail trains (?????)
- Nucl. Instrum. Methods Phys. Res., A 417 (1998) 9-15

But let's go back to collision processes...

Signal and Background

The fact that the sum $\sum_{i} N_{\text {obs }}^{i}$ goes over all physics processes means that we cannot readily separate the process in which we are interested - the signal. All of the other processes constitute the background for that measurement. We can separate backgrounds in two sets:
\square Irreducible backgrounds are those that share the exact same final state as the signal. For instance, the nonresonant diphoton production $\mathrm{pp} \rightarrow \gamma \gamma$ is an irreducible background to Higgs boson production in that channel, $\mathrm{pp} \rightarrow \mathrm{H} \rightarrow \gamma \gamma$. The only option is to model them as well as possible.
\square Reducible backgrounds are those where the final state differs from that of the signal, but due to various reasons end up being selected by our analysis. An example would be inclusive $\mathrm{Z} \rightarrow \ell \ell$ production being a background for a $\mathrm{ZZ} \rightarrow \ell \ell q$ search: the former could appear as a "dilepton + jet" final state, and that jet could be mistaken to be the $\mathrm{Z} \rightarrow \mathrm{qq}$ leg of the latter.

Separating Signal and Background

Our first task is to search for observables that are differently distributed for signal and background. Some searches are easy, for $\mathrm{Z} \rightarrow \ell \ell$:

2 high- p_{T} leptons.
\square Same flavour, opposite charges.
\square Invariant mass $M_{\ell \ell}$ in $70-110 \mathrm{GeV}$ range.
Other searches are harder. The Razor variables used for SUSY searches:

$$
\begin{gathered}
M_{\mathrm{R}} \equiv \sqrt{\left(\left|\vec{p}_{1}^{j_{1}}\right|+\left|\vec{p}^{j_{2}}\right|\right)^{2}-\left(p_{z}^{j_{1}}+p_{z}^{j_{2}}\right)^{2}} \text { and } R^{2} \equiv\left(\frac{M_{\mathrm{T}}^{\mathrm{R}}}{M_{\mathrm{R}}}\right)^{2} \\
\text { with } M_{\mathrm{T}}^{\mathrm{R}} \equiv \sqrt{\frac{p_{\mathrm{T}}^{\text {miss }}\left(p_{\mathrm{T}}^{j_{1}}+p_{\mathrm{T}}^{j_{2}}\right)-\vec{p}_{\mathrm{T}}^{\text {miss }} \cdot\left(\vec{p}_{\mathrm{T}}^{j_{1}}+\vec{p}_{\mathrm{T}}^{j_{2}}\right)}{2}}
\end{gathered}
$$

Machine Learning in Analysis

Some times, we don't need to search for variables... the computer can do it for us! Machine Learning (ML) techniques can be applied to two kinds of problems:
\square Classification problems: the output variable takes class labels. Useful for analysis, e.g. classify the event as signal or background.

- Usually we unpack the classification and work with the output variable directly.
\square Regression problems: the output variable takes continuous values. Useful for reconstruction, e.g. energy of a b-jet based on its kinematics and flavour content.

Cut-Based Analyses

Design a set of cuts by as unbiased a procedure as possible.

- Blind study: try to avoid observer bias and confirmation bias. Don't look at the data until you have frozen the analysis.
\square Choose cuts that optimise the final overall accuracy of the result.
- Difficult tradeoff between statistical and systematic uncertainties (see later).
Always study the marginal effect of each of your cuts by tables and plots.
- Cuts with no marginal effect (that is, they remove no events after all other
 cuts) are quite useless.

Background Estimation

After you optimise your analysis, some background always* remains. An array of options are available to estimate it:
\square Fully trust the simulation: not recommended, except maybe for backgrounds so small that even an error by a large factor would make no difference.
\square Trust a "data corrected" simulation: usually done by defining control regions (a.k.a "sidebands"), in which you expect similar behaviour of your background but a near-absence of your signal.
\square Model your background "in situ": the same, but your control regions act simultaneously as measurement regions for some other modality of your search.

* Even if it doesn't, you still have to find a way to put an uncertainty on that zero!

Basic Concepts in Probability

Mathematical probability: given the set of all possible exclusive, elementary events X_{i}, probability of occurrence of X_{i} is $P\left(X_{i}\right)$ and follows the Kolmogorov axioms:

- $P\left(X_{i}\right) \geq 0$ for all i
- $P\left(X_{i}\right)$ or $\left.X_{j}\right)=P\left(X_{i}\right)+P\left(X_{j}\right)$
- $\sum_{\Omega} P\left(X_{i}\right)=1$

Frequentist probability: if your observe N events, and n of them are of type N, the probability that any single event will be of type X is the "empirical" limit of the frequency ratio:

$$
P(X)=\lim _{N \rightarrow \infty} \frac{n}{N}
$$

- Approximate the probability by making N large.
- Experiments have to be repeatable - but repeatable means that all the relevant conditions are the same. Good science should produce reproducible results.
\square Bayesian probability: it is the degree of belief in X. Operational definition is based on the coherent bet: [Finetti1974]
- "The idea is to determine how strongly a person believes that X will occur by determining how much he would be willing to bet on it, assuming that he would be willing to bet on it, assuming that he wins a fixed amount if X does later occur and nothing if it fails to occur. Then $P(X)$ is defined as the largest amount he would be willing to bet, divided by the amount he stands to win." [James2006].
- This follows the Kolmogorov axioms.
- However, it is a property of both the observer and the observed system - it will in general change if the observer obtains more knowledge. It is a subjective probability!
- On the other hand, it helps addressing some questions that we want to try to answer:
- "What is the probability that the universe is (cosmologically) flat?"
- "What is the probability that the Higgs vacuum is stable?"
- There is a lot of work in studying objective Bayesian statistics (H Jeffreys, E. T. Jaynes, S. James, J. Berger,.... The science is far from settled!

Bayes Theorem

For discrete events:

$$
P(A \mid B)=\frac{P(B \mid A) \cdot P(A)}{P(B)} \quad \stackrel{\text { Bayesian }}{\Rightarrow} \quad P\left(\theta_{i} \mid \boldsymbol{X}^{0}\right)=\frac{P\left(\boldsymbol{X}^{0} \mid \theta_{i}\right) \cdot P\left(\theta_{i}\right)}{P\left(\boldsymbol{X}^{0}\right)}
$$

For continuous random variables:

$$
q(Y \mid X)=\frac{p(X \mid Y) h(y)}{g(X)} \quad \stackrel{\text { Bayesian }}{\Rightarrow} p\left(\theta \mid \boldsymbol{X}^{0}\right)=\frac{p\left(\boldsymbol{X}^{0} \mid \theta\right) p(\theta)}{\int p\left(\boldsymbol{X}^{0} \mid \theta\right) p(\theta) d \theta}
$$

$\square p\left(\theta \mid \boldsymbol{X}^{0}\right)$ is a p.d.f, the posterior probability density for θ.
$\square p\left(\boldsymbol{X}^{0} \mid \theta\right)$ is the likelihood function $L(\theta)$. It is not a p.d.f
$\square p(\theta)$ is the prior probability density for θ. Here lies the major problem!

Example (straight from Wikipedia):
\square There are two subspecies of beetle - the "common one" C and the "rare one" R.
\square An entomologist spots what might be a rare subspecies of beetle, due to the pattern X on its back.
\square In the rare subspecies, 98% have the pattern, or $P(X \mid R)=98 \%$. In the common subspecies, 5% have the pattern, or $P(X \mid C)$.
\square The rare subspecies accounts for only 0.1% of the population.
\square How likely is the beetle having the pattern to be rare, or what is $P(R \mid X)$?

Example (straight from Wikipedia):
\square There are two subspecies of beetle - the "common one" C and the "rare one" R.
\square An entomologist spots what might be a rare subspecies of beetle, due to the pattern X on its back.
\square In the rare subspecies, 98% have the pattern, or $P(X \mid R)=98 \%$. In the common subspecies, 5\% have the pattern, or $P(X \mid C)$.
\square The rare subspecies accounts for only 0.1% of the population.
\square How likely is the beetle having the pattern to be rare, or what is $P(R \mid X)$?

$$
P(R \mid X)=\frac{P(X \mid R) P(R)}{P(X)}=\frac{0.98 \times 0.001}{0.98 \times 0.001+0.05 \times 0.999} \simeq 1.9 \%
$$

The Prior ProblemS - stolen from M. Pierini (CERN)

\square The need of priors in Bayesian statistics is a problem for some physicist
The origin of the problem lies in the very first Bayesian assumption, namely that unknown model parameters are to be understood as mathematical objects distributed according to PDFs, which are assumed to be known: the priors. Obviously, the choice of the priors cannot be irrelevant; hence, the Bayesian treatment is doomed to lead to results which depend on the decisions made, necessarily on unscientific basis, by the authors of a given analysis, for the choice of these extraordinary PDFs.
J. Charles et al. hep-ph/0607246
\square The lack of priors in nonBayesian statistics is a problem for some statistician
The frequentist approach to hypothesis testing does not permit researchers to place probabilities of being correct on the competing hypotheses. This is because of the limitations on mathematical probabilities used by frequentists. For the frequentists, probabilities can only be defined for random variables, and hypotheses are not variables (they are not observables)... This limitation for frequentists is a real drawback because the applied researcher would really like to be able to place a degree of belief on the hypothesis. He or she would like to see how the weight of evidence modifies his/her degree of belief (probability) on the hypothesis being true.
J. Press, Subjective and Objective Bayesian Statistics

DID THE SUN JUST EXPLODE?
 (TS NOTH, SO WEEE NOT STRE)

FREQUENTIST SIATISTICIAN:

Practical Answers to Statistical Questions

\square Point estimation - find a single value $\hat{\theta}$ that is "as close as possible" to the true parameter θ we want to measure. We usually use the maximum likelihood estimator

$$
\frac{\partial \ln L}{\partial \theta_{i}}=0
$$

which is optimal in the asymptotic limit of large N.

- But in general it is better to report the likelihood function itself, at least near its maxima.
\square Interval estimation - find the range $\theta_{a} \leq \theta \leq \theta_{b}$ that contains the true value θ_{0} with probability β.
- 1D: trivial, use the Neyman construction with the Feldman-Cousins "unified approach";
- ND: use profile likelihood (MINOS). As a bonus, it allows for the removal of nuisance parameters $\boldsymbol{\mu}$ by maximising the full likelihood, at each value of the parameter of interest θ.

Example of Profile Likelihood

The profiled combined likelihoods for ATLAS and CMS Run 1 diboson resonance searches. The best-fit cross-section for the $\mathrm{W}^{\prime} \rightarrow \mathrm{W}_{L} \mathrm{Z}_{L}$ with a W^{\prime} mass of 1.9 TeV was $\sigma=5.3_{-2.0}^{+2.3} \mathrm{fb}$.

Hypothesis Testing - from Bob Cousins

Consider two hypotheses:
$\square H_{0}$: is the null hypothesis. For instance, "the Standard Model is a true description of nature at the scales probed by the LHC".
$\square H_{1}$: is the alternative hypothesis. For instance, " \langle INSERT YOUR MODEL HERE \rangle is a true description of nature at the scales probed by the LHC".
$L(X, \theta)$ is different for H_{0} and H_{1}. How do we test the two hypotheses against each other?

- For the null hypothesis H 0 , order possible observations \times from least extreme to most extreme, using an ordering principle (which can depend on H 1 as well). Choose a cutoff α (smallish number).
\square "Reject" H_{0} if the observed x_{0} is in the most extreme fraction α of observations \times (generated under H_{0}). By construction:
- $\alpha=$ probability (with x generated according to H_{0}) of rejecting H_{0} when it is true;
- $\beta=$ probability (with x generated according to H_{1}) of not rejecting H_{0} when it is false.

Expected distribution of $-2 \ln \left(L\left(0^{-}\right) / L\left(0^{+}\right)\right)$under the pure pseudoscalar and pure scalar hypotheses (histograms) for the Higgs boson. The arrow indicates the value determined from the CMS observed data with the discovery dataset ($7 \mathrm{TeV}, 5.1 \mathrm{fb}^{-1}$ and $8 \mathrm{TeV}, 12.2 \mathrm{fb}^{-1}$).

A decision on whether or not to declare discovery (falsifying H_{0}) requires 2 more inputs, both of which can affect the choice of α :
\square Prior belief in H_{0} vs H_{1}.
\square Cost of Type I error (false discovery claim) vs cost of Type II error (missed discovery).

A one-size-fits-all criterion of α corresponding to 5σ is without foundation!
....and still, I (Thiago) am positive it will still be used for the rest of the days of the LHC.

Example: Ratio of Hadronic \& Leptonic Cross Sections in $e^{+} e^{-}$Reactions

For energy range where five quark flavours contribute and below the Z resonance (for lowest order in perturbation theory)

$$
\begin{aligned}
R_{\gamma} & =\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}=\frac{\sigma_{\mathrm{had}}}{\sigma_{\mathrm{lep}}} \\
& =N_{c} \sum_{q} e_{q}^{2}=N_{c} \frac{11}{9}
\end{aligned}
$$

Goal: determine or constrain the number of colour states $\left(N_{c}\right)$

\square Count the number of events with hadronic ($N_{\text {had }}$) and leptonic ($N_{\text {lep }}$) final states

$$
R_{\gamma}=\frac{\sigma_{\text {had }}}{\sigma_{\text {lep }}}=\frac{N_{\text {had }} / \mathcal{L}}{N_{\text {lep }} / \mathcal{L}}=\frac{N_{\text {had }}}{N_{\text {lep }}}
$$

\square Define event selection and estimate backgrounds, possibly with input from simulation to define discrimination variables.

- In this case, the number of charged particles ($N_{\text {tracks }}$) in each event helps to separate hadronic from leptonic events. Usually leptonic events have few tracks, whilst hadronic events have many more.
- But there is some overlap, so the selection has an efficiency $(\epsilon \leq 1)$ to select a given type of event.

$$
N_{\text {had } / \text { lep }}^{\text {meas }}=\epsilon_{\text {had } / \text { lep }}^{\text {meas }} \cdot N_{\text {had } / \mathrm{lep}}^{\text {true }}
$$

- $N_{\text {had/lep }}^{\text {meas }}$ should be corrected. In practice, what we
 do is estimate the efficiencies (using either simulation or data).Analysis
- In general efficiency is not only due to the cut, but also includes: $\epsilon=A \cdot \epsilon_{\mathrm{tri}} \cdot \epsilon_{\mathrm{rec}} \cdot \epsilon_{\mathrm{cut}}$
- A: detector acceptance
- $\epsilon_{\text {tri }}, \epsilon_{\text {rec }}, \epsilon_{\text {cut }}$: trigger, reconstruction, and cut efficiencies
- Background subtraction

$$
N_{\text {lep }}^{\text {true }}=\left(N_{\text {lep }}^{\text {meas }}-N_{\mathrm{bckg}}\right) / \epsilon_{\mathrm{lep}}
$$

- Statistical uncertainties
- Can be estimated considering the statistical distributions followed in each measurement.
- For counting experiment a Poisson distribution can be a proper choice.
- For efficiency measurement (pass or fail), an uncertainty following a binomial would be preferable.
- Systematic uncertainties
- In general, it will depend on each analysis (no standard procedure).
- E.g. in the present case we could assign an uncertainty associated to the mismodelling of detector response by the simulation, which was used for efficiency correction.

Ratio of Hadronic \& Leptonic Cross Sections in $e^{+} e^{-}$Reactions: Result

\square Measurements of R from different lepton colliders

- The relation for R_{γ} in previous slides applies to region $\sqrt{s}>10 \mathrm{GeV}$ (where quarks u, d, s, c, and b contribute) and far from the Z boson peak.
- In this case we have $R_{\gamma}=N_{c} \frac{11}{\mathrm{a}} \approx \frac{11}{3} \Rightarrow N_{c} \approx 3$.

Tools of the Trade

Vir ROOTROOT is a modular scientific software toolkit. It provides all the functionalities needed to deal with big data processing, statistical analysis, visualisation and storage. It is currently used by all the LHC experiments.

SciPy is a Python-based ecosystem of open-source software for mathematics, science, and engineering. In particular, some of the core packages are NumPy, SciPy library, Matplotlib, IPython, SymPy, pandas.

